Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Añadir filtros

Base de datos
Tipo del documento
Intervalo de año
1.
Risk Manag Healthc Policy ; 16: 111-120, 2023.
Artículo en Inglés | MEDLINE | ID: covidwho-2228803

RESUMEN

Background: Community screening for SARS-CoV-2 Omicron variant plays a significant role in controlling the spread of infection. However, loopholes may exist in the current management of community screening in Shanghai, China. The objective of this study was to discover loopholes in the management of community screening for SARS-CoV-2 Omicron variant in Shanghai, China and provide targeted solutions. Methods: The cross-sectional study was carried out April 4 to April 30, 2021, among residential committee directors from the Putuo District, Pudong District, and Minhang District of Shanghai, China. Data were collected using a self-designed questionnaire about the management of nucleic acid testing (NAT) sampling in communities through the network platform powered by www.wjx.cn. Results: A total of 203 residential committee directors responded to the survey. Of them, 47.3% were not accepted training and 40.4% were not aware of cross-infection. Comparison among sampling sites and communities, high-risk group contained lower proportion of community training (P = 0.093~0.200), higher awareness of cross-infection (P = 0.039~0.777), more medical workers (P = 0.007~0.724) and more tests performed (P = 0.001~0.992). Larger communities had more medical workers, sampling sites, sampling tables (P = 0.000) and higher awareness of cross-infection (P = 0.009), but lower proportion of community training (P = 0.051). Conclusion: Overall, community training and awareness of infection control were inadequate. Government or institutions should organize the community training and raise the awareness of infection control. Significant differences exist in NAT management patterns between sampling sites, as well as communities of different sizes. Residential community directors minimize high-risk sampling point settings in the future. Special personnel designated by the government or institutions should tour to guide each sampling site.

2.
J Med Virol ; 95(1): e28383, 2023 01.
Artículo en Inglés | MEDLINE | ID: covidwho-2148398

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global coronavirus disease 2019 (COVID-19) pandemic that has affected the lives of billions of individuals. However, the host-virus interactions still need further investigation to reveal the underling mechanism of SARS-CoV-2 pathogenesis. Here, transcriptomics analysis of SARS-CoV-2 infection highlighted possible correlation between host-associated signaling pathway and virus. In detail, cAMP-protein kinase (PKA) pathway has an essential role in SARS-CoV-2 infection, followed by the interaction between cyclic AMP response element binding protein (CREB) and CREB-binding protein (CBP) could be induced and leading to the enhancement of CREB/CBP transcriptional activity. The replication of Delta and Omicron BA.5 were inhibited by about 49.4% and 44.7% after knockdown of CREB and CBP with small interfering RNAs, respectively. Furthermore, a small organic molecule naphthol AS-E (nAS-E), which targets on the interaction between CREB and CBP, potently inhibited SARS-CoV-2 wild-type (WT) infection with comparable the half-maximal effective concentration (EC50 ) 1.04 µM to Remdesivir 0.57 µM. Compared with WT virus, EC50 in Calu-3 cells against Delta, Omicron BA.2, and Omicron BA.5 were, on average, 1.5-fold, 1.1-fold, and 1.5-fold higher, respectively, nAS-E had a satisfied antiviral effect against Omicron variants. Taken together, our study demonstrated the importance of CREB/CBP induced by cAMP-PKA pathway during SARS-CoV-2 infection, and further provided a novel CREB/CBP interaction therapeutic drug targets for COVID-19.


Asunto(s)
COVID-19 , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Interacciones Huésped-Patógeno , Humanos , COVID-19/metabolismo , AMP Cíclico/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Proteína de Unión a CREB/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA